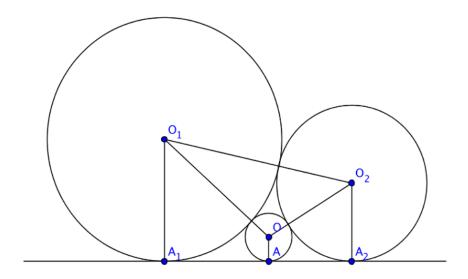
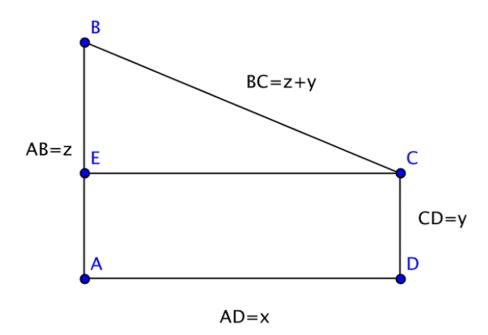
Réponse à l'énigme du vigneron proposée dans la <u>lettre n°3</u> (Retrouvez l'énoncé <u>ici</u>)



Remarquons tout d'abord que : $O_1O=R_1+R$, $OO_2=R_2+R$ et $O_1O_2=R_1+R_2$. Les trois quadrilatères O_1OAA_1 , OO_2A_2A et $O_1O_2A_1A_2$ sont de la forme suivante :



Le théorème de pythagore appliqué au triangle EBC rectangle en E nous donne la relation suivante :

$$(z-y)^2 + x^2 = (z+y)^2$$

d'où l'expression de x en fonction de y et z:

$$x^2 = 4yz$$

soit:

$$x = \sqrt{4yz} = 2\sqrt{yz}.$$

En appliquant ce résultat aux trois quadrilatères O_1OAA_1 , OO_2A_2A et $O_1O_2A_1A_2$, nous obtenons alors :

$$A_1A = 2\sqrt{RR_1}$$
 $AA_2 = 2\sqrt{RR_2}$ et $A_1A_2 = 2\sqrt{R_1R_2}$.

Ainsi l'égalité $A_1A + AA_2 = A_1A_2$ s'écrit alors en fonction de R_1, R_2 et R:

$$2\sqrt{RR_1} + 2\sqrt{RR_2} = 2\sqrt{R_1R_2}.$$

Soit,

$$\sqrt{R}\sqrt{R_1} + \sqrt{R}\sqrt{R_2} = \sqrt{R_1}\sqrt{R_2}$$

en factorisant par le terme \sqrt{R} , nous obtenons :

$$\sqrt{R}(\sqrt{R_1} + \sqrt{R_2}) = \sqrt{R_1}\sqrt{R_2}.$$

Soit,

$$\sqrt{R} = \frac{\sqrt{R_1}\sqrt{R_2}}{\sqrt{R_1} + \sqrt{R_2}}.$$

Aplication aux données du texte : $R_1 = 16cm$ et $R_2 = 25cm$.

$$\sqrt{R} = \frac{5\times 4}{4+5} = \frac{20}{9}$$

Soit

R environ 5 cm.