Centre Galois

Orléans

Connaissez-vous les nombres réels ?

Nils Berglund

Institut Denis Poisson, Université d'Orléans, France

Juin 2025

Quelques ensembles de nombres connus

- \triangleright Entiers naturels : $\mathbb{N} = \{0, 1, 2, 3, ...\}$ Compter des objets, des personnes, ...
- ▶ Entiers relatifs : $\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$ Étages d'un immeuble
- ho Nombre rationnels : $\mathbb{Q} = \{\frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{N}, q \neq 0\} = \{\frac{1}{2}, \frac{3}{4}, -\frac{1}{3}, \dots\}$ Partager une pizza

Deux propriétés des nombres rationnels

○ On peut dénombrer les nombres rationnels, c-à-d en faire la liste. Pour les rationnels entre 0 et 1 :

$$\begin{array}{l} \frac{1}{2}, \\ \frac{1}{3}, \frac{2}{3}, \\ \frac{1}{4}, \frac{2}{4}, \frac{3}{4} \\ \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \dots \end{array}$$

On dit que Q est dénombrable

- ▶ Entre deux rationnels, il existe toujours un autre rationnel :
 - ♦ Le point milieu de $\frac{a}{b}$ et $\frac{c}{d}$ est $\frac{1}{2}(\frac{a}{b} + \frac{c}{d})$
 - ♦ Le nombre $\frac{a+b}{c+d}$ est entre $\frac{a}{b}$ et $\frac{c}{d}$

La distance entre rationnels différents peut être arbitrairement petite. On dit que $\mathbb Q$ est dense

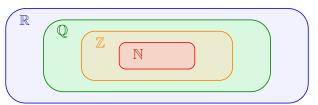
Les nombres irrationnels

Les nombres suivants sont des exemples de nombres réels qui ne peuvent pas s'écrire comme une fraction :

- $\triangleright \sqrt{2} = 1,41421356237310...$
- $\Rightarrow \pi = 3,14159265358979...$
- ▶ Le nombre d'Euler e = $1 + \frac{1}{1} + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{1 \cdot 2 \cdot 3 \cdot 4} + \dots = 2,71828182845905\dots$

L'ensemble des nombres réels est noté \mathbb{R} .

Les nombres réels qui ne sont pas dans Q sont appelés irrationnels



Le mathématicien Georg Cantor a montré que R est non dénombrable.

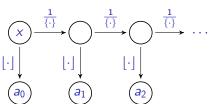
Fractions continues

 \triangleright Si $x \in \mathbb{R}$, on note [x] le plus grand entier inférieur ou égal à x. C'est la partie entière de x.

$$\left\lfloor \frac{3}{2} \right\rfloor = 1$$
, $\left\lfloor \pi \right\rfloor = 3$, $\left\lfloor 10 \right\rfloor = 10$, $\left\lfloor -0.5 \right\rfloor = -1$

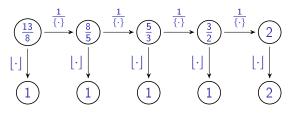
▶ La partie fractionnaire de x est $\{x\} = x - \lfloor x \rfloor$. Elle appartient à [0, 1[. $\{\frac{3}{2}\} = \frac{1}{2}$, $\{\pi\} = 0,141596\ldots$, $\{10\} = 0$, $\{-0,5\} = 0,5$

Soit x un nombre réel. On lui associe une suite (a_0, a_1, \dots) d'entiers comme suit :



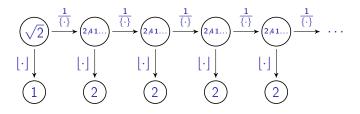
La procédure s'arrête si on tombe sur une partie fractionnaire nulle. On écrit alors $x = [a_0, a_1, a_2, \dots]$.

Exemple 1: Fraction continue de $\frac{13}{8}$



$$\frac{13}{8} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{2}}}}} = [1, 1, 1, 1, 2]$$

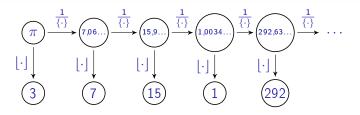
Exemple 2: Fraction continue de $\sqrt{2}$



$$\frac{1}{\sqrt{2}-1} = \frac{\sqrt{2}+1}{(\sqrt{2}-1)(\sqrt{2}+1)} = \frac{\sqrt{2}+1}{(2-1)} = \sqrt{2}+1$$

$$\sqrt{2} = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \dots}}}} = [1, 2, 2, 2, \dots]$$

Exemple 3: Fraction continue de π



$$\pi = 3 + \frac{1}{7 + \frac{1}{15 + \frac{1}{1 + \frac{1}{292 + \dots}}}} = [3, 7, 15, 1, 292, \dots]$$

Exemple 4: Fraction continue de e

$$\begin{split} & \text{e} = 2,71828182845905\dots \\ & = \left[2,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,1,\dots\right] \\ & = 2 + \frac{1}{1 + \frac{1}{2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{4 + \dots}}}}} \end{split}$$

Lien entre rationalité et fraction continue

Théorème:

Le développement en fraction continue d'un nombre réel x est fini (on finit par tomber sur 0) si, et seulement si, x est rationnel.

Le nombre d'or

$$\phi = [1, 1, 1, 1, 1, 1, 1, \dots]$$

$$= 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}}}$$

$$\Rightarrow \qquad \phi = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}}}$$

$$\Rightarrow \qquad \phi = 1 + \frac{1}{\phi}$$

$$\Rightarrow \qquad \phi^2 = \phi + 1$$

$$\Rightarrow \qquad \phi^2 - \phi - 1 = 0$$

$$\Rightarrow \qquad \phi = \frac{1 + \sqrt{5}}{2} = 1,618033988749895\dots$$

Les nombres algébriques

Définition: (Nombre algébrique)

- ▶ Un nombre irrationnel x est algébrique s'il existe un polynôme P à coefficients entiers tel que P(x) = 0.
- ▷ Un nombre algébrique irrationnel est quadratique si P est de degré 2.
- ▷ Un nombre irrationnel qui n'est pas algébrique est appelé transcendent.

Exemples:

- $\triangleright \sqrt{2}$ est algébrique quadratique, $P(x) = x^2 2$
- \triangleright le nombre d'or ϕ est algébrique quadratique, $P(x) = x^2 x 1$
- ⊳ la racine cubique de 2, notée $\sqrt[3]{2}$ ou $2^{1/3}$, est algébrique non quadratique, $P(x) = x^3 2$

Théorème: (Lagrange)

Le développement en fraction continue d'un nombre réel x finit par devenir périodique si, et seulement si, x est un irrationnel quadratique.

Convergents

```
Soit x = [a_0, a_1, a_2, a_3, \dots]
Les convergents de x sont les rationnels [a_0], [a_0, a_1], [a_0, a_1, a_2], ...
   \triangleright \pi = [3,7,15,1,292,\dots] = 3,14159265358979\dots
       [3] = 3
       [3,7] = 3 + \frac{1}{7} = \frac{22}{7} = 3,1428571428...
       [3,7,15] = \frac{333}{106} = 3,1415094339...
       [3,7,15,1] = \frac{355}{117} = 3,1415929203...
   \triangleright \sqrt{2} = [1, 2, 2, 2, 2, \dots]
       Convergents: \frac{3}{2}, \frac{7}{5}, \frac{17}{12}, \frac{41}{29}, \dots
   \triangleright \phi = [1, 1, 1, 1, 1, \dots]
       Convergents: 2, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \frac{13}{9}, \frac{21}{12}, \dots
```

Combien de convergents faut-il calculer pour approcher un nombre irrationnel avec une précision donnée ?

Ce sont des rapports de nombres de Fibonacci

Nombres Diophantiens

Définition: (Nombre Diophantien)

Un nombre irrationnel x est appelé Diophantien de type (C, a) pour des nombres C > 0 et $a \ge 1$ si

$$\left| x - \frac{p}{q} \right| \geqslant \frac{C}{|q|^{1+a}}$$

pour tous les $p \in \mathbb{Z}$ et $q \in \mathbb{Z}$ non nuls premiers entre eux. Si a = 1, x est dit de type constant.

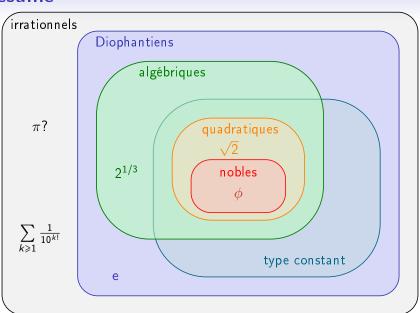
Théorème: (Liouville)

Soit x un nombre algébrique, c-à-d P(x) = 0, avec P un polynôme de degré n à coefficients entiers.

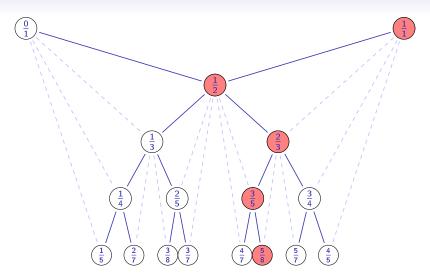
Si $P(x + y) = y^{k+1}Q(x, y)$ avec $Q(x, 0) \neq 0$, alors x est Diophantien de type $(C, \frac{n}{k+1} - 1)$ pour un C > 0.

En particulier, les irrationnels quadratiques sont de type constant.

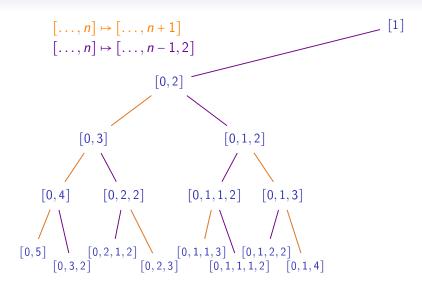
Résumé



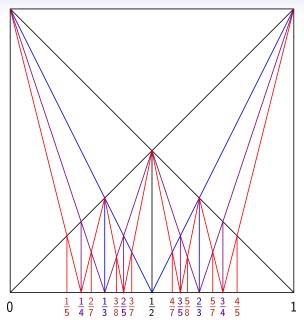
L'arbre de Farey



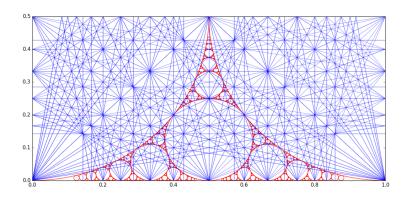
Arbre de Farey et fractions continues



Une construction géométrique



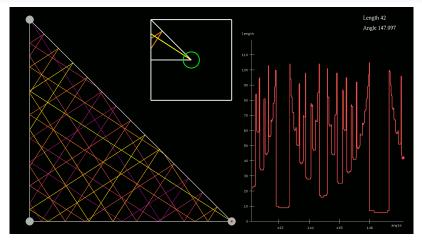
Arbre de Farey, cercles de Ford, et dentelle Appolonienne



CCO, https://commons.wikimedia.org/w/index.php?curid=107941717

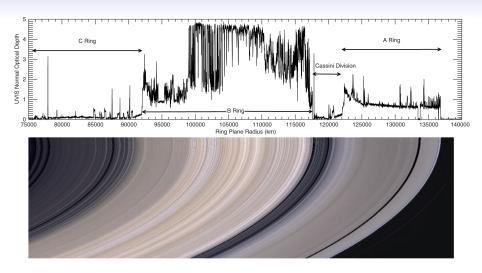
Cercle de Ford pour
$$\frac{p}{q} \in \mathbb{Q}$$
 : centre $(\frac{p}{q}, \frac{1}{2q^2})$, rayon $\frac{1}{2q^2}$

Le billard dans un triangle rectangle isocèle



(En ligne: https://youtu.be/M2-XdsccEj0)

Les anneaux de Saturne



Pour en savoir plus

▷ Sur YouTube :

https://www.youtube.com/@NilsBerglund/

▶ Articles dans Images des mathématiques :

https://images.math.cnrs.fr/

▷ Cette présentation :

 $\verb|https://www.idpoisson.fr/berglund/Galois25.pdf|$